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Phonons near interfaces 
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Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK 

Received 10 July 1989, in final form 16 October 1989 

Abstract. We discuss the nature of phonon spectra near interfaces and show by general 
thermodynamic arguments and by detailed analysis of linear chain models how it is that 
localised measurement of atomic motion on one side of an interface yields no information 
about the phonon structure of the material on the other. 

1. Introduction 

It is a curious fact that if measurements are made at a point in one material near to a 
boundary with another, then features of the phonon spectrum of the second material 
will not be observed. This is not an obvious result: one might expect phonons of one 
material to ‘penetrate’ another. It is the purpose of this paper to discuss this problem 
from various points of view in order to give some insight into localisation of phonon 
properties. 

It is necessary to be clear what is meant by localisation in this context. When a 
measurement is made, the mechanism of measurement may be local but the property 
measured may be non-local. The distinction is illustrated in conventional electron 
tunnelling experiments with superconductors. Tunnelling currents depend on the ampli- 
tudes of electron wavefunctions at the surfaces of the potential barrier, so the mechanism 
of coupling is (fairly) localised and one may say that the measurement is local; but the 
wavefunctions themselves are non-local. In superconductivity, the coherence length 
of the superconducting state imposes a minimum spatial scale over which electronic 
properties may change, so that features in the electronic properties observed by tun- 
nelling reflect interactions averaged over such distances even though the measurement 
is ‘local’. In the present discussion, we are not concerned with mechanisms of measure- 
ment, which could also impose their own spatial scales on what is measured, but with 
local values of relevant parameters, such as atomic displacements, which are involved 
in interactions and depend on bulk structure. 

In the literature, the term ‘phonon density of states’ is used loosely with several 
different meanings. The striat meanings of the term relate simply to counting of the 
phonon (eigen)states: number of states per frequency interval, for example. However, 
measurements are often said to show a (phonon) density of states when what they really 
show is the product of a density of states with the appropriate matrix element squared. 
The latter contains the details of the interaction of the phonons with the measuring 
field. The appearances of spectra measured by Raman, infra-red, neutron or inelastic 
tunnelling techniques may therefore be quite different (because of the different matrix 
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elements). These differing usages of the term 'density of states' lead to confusion. In 
this paper we restrict its use to its strict meaning as the number density of eigenstates. 

From what has been said above, it is clear that the local quantity involved in any 
interaction with phonons is the product of the density of states g(o)  with the square of 
the local phonon displacement amplitude, t2( w ) .  The former enters through summation 
over contributing transitions, and the latter through proportionality of the coupling 
potential to displacement. But this product is proportional to the local spectral energy 
density u(w). The local spectral energy density is therefore the essential phonon quantity 
involved in any interaction. We shall discuss localisation of phonon properties from this 
point of view in sections 5 and 6. 

It is, of course, obvious that when two materials are placed in contact, the density of 
phonon states changes. If the result of a local measurement near the interface is to 
remain unchanged, there must therefore be a compensating change in the intensities of 
the phonon modes. This is not simply a renormalisation to a larger volume if the materials 
are different since the proper boundary conditions have to be taken into consideration 
in calculating how amplitudes change in each material. It is the nature of the cancellation 
between densities of states and amplitudes which is explored in section 5 .  

In section 2 we give essential elements of the monatomic linear chain model for 
phonon structure in one dimension. In the following three sections we discuss localisation 
of phonon properties: in section 3 by using general arguments of classical thermo- 
dynamics, in section 4 by microscopic analysis of energy flow, and in section 5 by 
examining the eigenfunctions of a finite system. In section 6, we complete the analysis 
with discussion of evanescent modes. 

2. The monatomic linear chain 

Before discussing further the properties of phonons near to boundaries, it is appropriate 
to set out the relevant theory of the simple monatomic linear chain, which we shall use 
in later discussion. 

We consider a linear chain of identical masses m, distance a apart and joined by 
springs of spring constant a. Elementary analysis of the equations of motion (Blakemore, 
1985) shows that for frequencies w below a cut-off value given by 

0: = 401," (1) 

5 ,  = E o  exp[i(wt - kna)] (2) 

w / w ,  = ~2 = sin(ka/2) ( 0  s 0,) .  (3) 

there are propagating modes of the form 

where 5, is the displacement of mass n ,  and k is the wavenumber given by 

As w +. CO,, the wavenumber increases to z / a  so that at U, neighbouring masses move 
in antiphase. Driven above wc, neighbouring masses continue to move in antiphase but 
the motion takes the evanescent form 

5, = E0(-1)" exp(iwt) exp( -yna)  (4) 

S2 = cosh(ya/2) (w 2 0,) .  ( 5 )  

with the tunnelling exponent given by 

We note that at low frequencies, the dispersion relation takes the form w/w, = ka/2; 
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the wave motion is non-dispersive and the phase and group velocities are equal and 
given by 

v p  = v g  = aoJ2  = [aa/(m/a)]”2 = Y / p  = v s *  

The penultimate expression is the classical continuum result for the speed of sound v, 
with Y the Young modulus and p the density. As S’2 + 1- and k approaches its limiting 
value n / a ,  vg+ 0, as would be expected for the Bragg condition k = n / a .  

To discuss the behaviour of the waves at boundaries between two linear chains, it is 
convenient to work in terms of the generalised wave impedance Z defined as 

2 = F/E 

where Fand 8 are the force and velocity at the point at which the wave is driven. In terms 
of wave impedances, the mean energy flux is given by 

P = (&* + F*8) /4  = FF*(Z + Z*)/4ZZ* = g i * ( Z  + Z * ) / 4  (6) 
which are generalisations for complex quantities of the standard expressions. 

For continuous media, wave impedances are independent of position; but this is not 
the case for discrete systems such as those considered here. If the end element in a linear 
chain is a mass, then the wave impedance for driving the system at the mass is found to 
be 

2;  = exp(?ika/2). (7) 

Z :  = ?(am)”* exp(Tika/2). (8) 

If the end element is a spring, then the impedance at the free end of the spring is 

In these expressions, the upper signs correspond to waves propagating away from the 
end and the lower signs to waves arriving at the end. 

When we later analyse in detail what happens when two chains are joined, it is 
convenient to preserve symmetry between the two by ending each in a half-spring, that 
is, in a different spring of spring constant 2a .  The impedance at the free end becomes 

ZS$* = +(am)’/*/COS(ka/2). (9) 
(Two such identical chains joined together become a uniform chain with no disconti- 
nuity.) It must be pointed out, however, that this choice in no way affects the essential 
result of the analysis. Carrying the calculations through for other cases shows that 
localisation of phonon properties is unaffected by details of how the chains are coupled. 
This fact also allow us to take account of the possibility of structural relaxation (which 
can occur in real systems close to boundaries). That may likewise be incorporated as a 
modification to coupling, so the results are quite general. 

It should be noted that reversal of the direction of propagation does not generally 
correspond to a simple change in sign of the impedance, as is always the case for 
continuous media. We see here that the general result for change of propagation 
direction is Z+ -Z*.  That is 

(10) 2’ = _Z’* 

This is a general result which may be viewed as a direct consequence of time reversal 
symmetry. It allows us to express all results involving wave impedances in standard form 
using only the Z+s which are the conventional impedances defined for launching waves 
into a medium. In later parts of this paper we are therefore able to drop the 5 superscripts. 
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We see that Z,  and Z,  become pure imaginary as w + w, as must be the case because, 
although force and velocity remain finite, there can be no net energy flow since vg+ 0. 
At w = w,, a chain behaves as a lossless simple harmonic oscillator driven at resonance, 
with the energy oscillating between kinetic and potential forms in the masses and springs 
respectively. In contrast to 2, and Z,, Z,/? becomes infinite at w = w, corresponding to 
a finite force at the centre of a spring but with zero displacement since at w, neighbouring 
masses move in antiphase. 

For w 2 wc, corresponding expressions for the wave impedances become 

Z ,  = -i(am)1/2 exp(ya/2) 

Z ,  = -i(c.m) 1/2 exp( - ya/2) 

ZS/?  = i(am)1/2/sinh(ya/2). 

Here there is no direction of propagation so the 2 s  carry no superscripts. 
The expressions for the reflection and transmission coefficients at a junction between 

two chains are different from the standard expressions for continuous media because, as 
pointed out above, reversal of the direction of propagation does not generally correspond 
simply to a change of sign of the impedance. However, using (lo), we may express the 
results in the equivalent of standard form: 

r =  - ( z ;  + z : ) / ( Z :  + 2:) = (ZT - Z,>/(Z ,  + z,)  
t =  (2 :  - Z ; ) / ( Z :  + Z ; )  = 2Re(Z,)/(Z, + 2,). 

(14) 

(15) 
These coefficients are defined in terms of the ratios of the extensive variable, here the 
displacement or velocity. 

For waves incident from one chain at a junction with a second for which w 3 w,  we 
find 1 r 1 = 1 as expected. The transmission coefficient, giving the amplitude at the start 
of chain 2, is finite but there is no net energy flow since Z2 is pure imaginary. 

We now return to the problem of the behaviour of phonons near an interface. 

3. A thermodynamic argument 

We can show quite generally that in equilibrium the phonon spectral energy density near 
a boundary between two media is isotropic and characteristic of the medium in which it 
is measured. 

Consider, two such adjoined media with the whole system in tfiermal equilibrium. 
Then, if the media are sufficiently extensive, the phonons arriving at the boundary from 
the left will certainly be characteristic of the left medium, and those arriving from the 
right characteristic of the medium to the right. But it follows from the Second Law of 
Thermodynamics that in thermal equilibrium the phonon spectrum at any point must be 
isotropic, for if it were not, it would be possible to intercept the disbalance by arranging 
similarly tuned directional collectors to receive different spectral intensities. Their 
temperatures would then diverge; but divergence of temperature within an isolated 
system initially in thermal equilibrium involves a decrease in entropy which would 
violate the Second Law. (This is the same argument as is conventionally applied to 
thermal radiation in an equal temperature enclosure; see Adkins 1983.) One therefore 
concludes that the spectral energy density in the phonon gas is isotropic, and, in particu- 
lar, that near the boundary between the media, the phonon flux from the direction of 
the boundary must be identical to that approaching it. 
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Applied to semi-infinite media it follows that measurements made on phonons on 
one side of the boundary can yield no information about the medium on the other. The 
boundary therefore controls transmitted and reflected intensities in just the way required 
to maintain the quality of the radiation on either side. The restriction to semi-infinite 
media arises because it is only in that limit that we know that the phonon flux incident 
at the boundary is characteristic of the medium from which it comes. With finite systems, 
the phonon modes must be those of the whole system and individual intensities will 
fluctuate depending on the precise matching conditions. However, we shall show in 
section 5 by analysing a one-dimensional model, how the mean spectral intensity is still 
unchanged. Applied to finite systems, the thermodynamic argument always shows the 
phonon spectrum to be isotropic although its detailed nature must now involve the whole 
system. 

While the thermodynamic argument given above is quite general, it gives no insight 
into the processes by which the quality of the phonon spectrum is maintained. For that, 
we must turn to detailed microscopic models for what happens at the interface between 
two media. For the most part, we shall explore the physics by considering the one- 
dimensional case. 

4. Energyflux 

We again consider semi-infinite media to avoid boundary effects and illustrate the 
physics by restricting discussion to the one-dimensional problem of two joined linear 
chains. 

At frequencies below the cutoffs of both chains, energy will be propagating through- 
out the system in the gas of phonons, although, in equilibrium, there will be no net 
transport. Using periodic boundary conditions, the density of states on a chain of length 
L is 

g( 0) = ( L / 2 n )  d k/d w 

so the spectral energy density on the chain (including energy propagating in both 
directions) is 

U ( @ )  = ( b ( w ) / n )  ak/dw 

where b(w)  is the Planck expression for the mean energy of an oscillator of frequency 
w in thermal equilibrium. The spectral energy flux in each direction along the chain is 
therefore 

P(0) = Vg(W)U(O)/2 = b(w) /2n  

where we have used the general result for the group velocity, v g  = aw/dk. We note that 
this result is independent of the precise form of the dispersion relation and is therefore 
correct for any linear chain below cut-off. In particular, the power incident at the 
boundary between our two chains is the same on both sides of the junction. 

We now look at the power reflection and transmission coefficients. These are 

R = 1 ( Z  T - Z*>/@, + Z2) I 
T = Itl2 Re(Z,)/Re(Z,) = 4 Re(2,)  Re(Z2)/I (2, + Z , )  1,. 

(16) 

(17) 
We note that these are symmetric as regards the direction of incidence. Since, in 
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equilibrium, the incident fluxes are also the same, we conclude that radiation leaving 
the boundary (consisting partly of reflected radiation and partly of radiation transmitted 
from the other side) is identical to that incident. We have thus shown, by considering 
the details of energy transport at the boundary in the one-dimensional model, that the 
spectral energy density in the phonons near the boundary is unaltered by the proximity of 
the second chain. This is a restricted case of the general result derived by thermodynamic 
arguments in the last section. Extension of the above arguments to higher dimensionality 
is far from trivial because of the mode mixing that generally occurs with oblique incidence 
at a boundary in two and three dimensions. 

5. Finite systems 

The arguments of the previous sections were based on energy flow near the boundary 
between semi-infinite chains. The condition that the chains should be semi-infinite 
ensured that phonons arriving at the boundary were of a character dependent solely on 
the medium from which they arrived. With finite chains (or more strictly, with chains 
that are shorter than the inelastic scattering length) we can no longer ignore the free 
ends. We are now forced to analyse the model in terms of the normal modes of the whole 
system. We shall show from the equations governing the normal modes that the spectral 
energy densities in the two chains are again identical to those that would be present if 
the second chain were not there. 

This is a much more difficult problem but one which brings out clearly the distinction 
between the two usages of ‘phonon density of states’ discussed in the introduction. It is 
obvious that the density of phonon states (in the strict sense of number of states per 
energy interval) is a property of the whole system and that it must be the same at all 
points throughout the system. But experiments measure the spectral energy density 
which, as we shall show, does change discontinuously on passing from one medium to 
the other in just such a way as is required to give results characteristic of the medium in 
which the measurement is made. 

5.1. Impedances of finite chains 

We first required the generalised impedance presented by a chain of finite length at 
frequencies below U,. With a continuous medium, a free end defines an antinode of 
displacement but this is not the correct boundary condition for a discrete system. For 
the discrete system, the essential boundary condition is that there is no force applied to 
the last mass from the remote side. This is precisely equivalent to there being an antinode 
of displacement half an atomic separation beyond the last mass, for if one imagined the 
chain continued, this would ensure that the ultimate mass and the notional mass next 
beyond it have the same displacements at all times so that the intervening spring never 
changes length and there is never any force between them (figure 1). The same physics 
is obtained by using the amplitude reflection coefficient with Z2 = 0. The displacements 
of the masses, numbered from the terminal mass are then of the form 

E n  = E o  cos[ka(n - i)] exp(iwt) 

2, = i(am)l/* sin(kaN)/cos[ka(N - h)] 
2, = i(am)lI2 sin(kaN)/cos[ka(N + h)] 

(18) 
and the generalised impedances taking account of the phasing of the two propagating 
components in the standing waves become 

(19) 

(20) 
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Figure 1. The boundary condition at a free end of a monatomic linear chain is that there is 
an antinode of displacement half an inter-mass spacing beyond the terminal mass. 

z ~ / ~  = i(am) 1/2 tan(ka~)/cos(ka/2). 

In the following discussion, we shall only use the last of these. 

5.2. The modes 

When two finite chains are joined, the condition for the mode frequencies is that the 
sum of the impedances presented by the chains at the junction is zero. For the case of 
two chains ending in half springs this is 

( a1 ml)  1/2 tan(kl a l~ l ) / cos (k la l /2 )  

+ (a2m2l1l2 tan(k2a2~2)/cos(k2a2/2)  = 0. (22) 

The relationships between the amplitudes in the two chains, E l  and E 2 ,  for a given mode 
is obtained by applying an appropriate boundary condition at the junction. We equate 
the displacements. (With equation (22) this implies equality of forces.) Again, this 
boundary condition differs from the case for a continuous medium because the standing 
waves of equation (18) only have physical significance at the masses. The displacement 
of the free end of the half spring is therefore the mean of the displacements of the end 
mass (i.e. the nth mass) and of a notional (n + 1)th mass if the chain were extended 
beyond the half spring. This then gives 

E l  cos(klalN1) cos(k,al/2) = E 2  cos(k2a2N2) cos(k2a2/2). (23) 

5.3. The density of states 

From equation (22) we see that mode frequencies are given by an equation of the form 

c1 tan(klalNl)  = -c2 tan(k2a2N2) = y (24) 

c = (a im ) /cos ( k  a / 2 ) .  (25) 

where c1 and c2 are positive and relatively slowly-varying quantities given by 

We shall refer to y later. Both sides of this equation change between --CQ and +m once 
for each change in their arguments of JC, but the first tan term has a positive gradient at 
all points and the second a negative. The number of intersections in a given frequency 
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interval is therefore 1/n times the sum of the changes in the arguments in the given 
frequency interval. This gives the density of states g(w) :  

g ( 0 )  = ( l / ~ ) ( ~ / J o ) ( k l a l N l  + k2a2N2) 

g(o> = (2/4[(Nl/WC1 )(l/cos(k1 a 1 /2) 1 + (Nz/w,z)(l/cos(k*a*/2) 1 I. 

(26) 

(27) 

which, with equations (1) and (3) gives 

This is, as expected, just the sum of the densities of states for standing wave modes (fixed 
boundary conditions) of the individual chains. 

5.4. The mean energy density on a chain 

We first examine how the fact that the waves on the chains are standing waves affects 
the relationship between the mode amplitudes and the mean energy density on a chain. 

The mean energy per atom on a chain of N atoms due to a mode of peak amplitude 
Eo and frequency w is, from equation (18), 

U = tmw25; 2 cos’[ka(n - & ) / N I  
N 

1 

= tmo25;(1 + sin(2kaN)/2Nsin(ka)). (28) 

The second term in the bracket is a correction resulting from the amount by which the 
mode does not have an integer number of half wavelengths on the chain. It has the form 
of a sinc function and becomes unimportant as kaN becomes large. 

5.5. The spectral energy density 

It is evident from the form of equation (20) that solutions will involve various values of 
the kaNs and therefore, from (23), various ratios of amplitudes between the two chains. 
In thermal equilibrium, the total energy in a mode is simply given by the appropriate 
Planck expression for the mean energy of a simple harmonic oscillator, but the division 
of that energy between the two chains will vary from mode to mode according to the 
precise values of the kaNs. To compare the spectral intensities on the chains, we 
therefore need to perform an appropriate average over modes. 

Now the ratio of the total energies on the two chains in a particular mode may, with 
the help of equations (23) and (24), be written 

N1m15 :/NzmZ 5 1 = (g1/ggZh sec2(k1a1N1)lc* sec2 (k2azN2) (29) 
where g, and g, are the densities of states on the individual chains. Since c1 and c, are 
slowly-varying, to obtain the ratio of the spectral energy densities we require the 
statistical average of the sec2 ratio in (29). The neglect of the 1/N term in equation (28) 
will generally be a good approximation since, quite apart from the fact that N will usually 
be much greater than 1, we shall be averaging over modes and the correction term can 
be expected to average to zero. 

Now the normal modes will generate a probability distributionp(y) of the variable 
y defined in equation (24). But the arguments in the tangents will (normally) vary 
incommensurately from solution to solution. We may therefore takep(y) dy , the prob- 
ability that a solution lies in the range y toy  + dy , as proportional to the product of the 
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probabilities that eachofthe twoc tan(kaN) termsliesin thegivenrange. The probability 
that one such term lies in the given range is proportional to 

d(kaN)/dy = cos*(kaN) = 1/[1 + (y/c)2]. (30) 

(31) 

Hence 

P(Y> = m/P + (Y/c1>21>{1/[1 + (Y/c2>21) = A  cos2(k1a1N1) cos2(k2a2N2) 

where A is a constant. 
A further consequence of the incommensurability of the arguments in the tangent 

terms is that the secant terms in (29) may be taken as statistically independent of one 
another, so that in calculating the spectral energy density ratio we may replace the 
average of the sec2 ratio in (29) with the ratio of their averages. Then 

and a corresponding expression is obtained for the other average. Substituting in (29), 
all terms on the right hand side cancel except the densities of states and we obtain for 
the ratio of the spectral energy densities on the chains: 

UI(W)/U2(4 = g1(4/g2(4 .  (32) 

Remembering that the density of states for the whole system is the sum of the densities 
of states of the individual chains (equation (27)) we see that the spectral energy density 
on each chain is identical to that which would be present if the other chain were not 
there: 

U 1  + U 2  = (81 + g2>b(w> 

U 1  + U 2  = U l k l  + g2)/g3 

U 1  =g1b(w). 

but from (32) 

so that 

5.6. Boundary effects 

It must be pointed out in relation to the arguments given above that the proximity of an 
interface does modify local phonon structure because acoustic mismatch at the boundary 
produces standing wave components in the phonon field. This is similar to what happens 
near a free surface except that here the second medium imposes an end correction that 
varies with frequency. Measurements of changes in standing wave structure could 
therefore yield information about the changing impedance of the remote material and 
therefore, in principle, about its phonon properties also. Nevertheless, there is no 
reflection of the bulk phonon structure of the remote material in the local spectral 
intensities, so the essential conclusions of our discussion do not require qualification. 

The presence of an interface or boundary also allows the possibility of surface modes. 
These do, of course, depend on the properties of both media so that measurement of 
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Figure 2. The reduction in intensity from one mass to the next in a monatomic linear chain 
at frequencies beyond cut-off. 

their structure on one side of an interface would again yield information about the 
material on the other. These need not concern us here, however, because our interest 
is in whether the bulkphonon structure of one material can be observed by measurements 
in the other. Thus, we only need to consider modes that are delocalised in one or both 
of the media. 

6. Evanescent modes 

At frequencies such that oC1 > U > wc2 modes are localised in chain 1 but penetrate as 
evanescent waves into chain 2. The density of states is essentially that of chain 1, differing 
only because of the end correction resulting from the loading of the first chain by the 
second. The modification is of order l/N1. Measurements made in the second chain 
close to the interface will therefore show the density of states of chain 1 but coupling to 
these modes will fall off with distance into the second chain. 

This situation is very different from that with propagating modes. There, measure- 
ments of spectral intensity at all points in chain 2 yield results characteristic of chain 2. 
Here, in chain 2, the spectral intensity varies with position and the density of states has 
the character of chain 1. The second chain now provides a means of coupling loosely to 
the modes of the first chain. This is a typical tunnelling phenomenon exemplified by 
quantum mechanical tunnelling of electrons into potential barriers, or by penetration 
of microwaves into waveguides beyond cut-off. The essential question is whether the 
extent of the penetration is sufficient to produce significantly measurable effects. 

From ( 5 )  we obtain the tunnelling exponent y in terms of the atomic spacing a and 
the reduced frequency Q: 

The attenuation of intensity from one mass of the next, eP2ya, is therefore 

+-ya = 2 1 n ( ~  -+ V 'Q~ - 1). 

Z n + J Z n  = (Q - m ) 4 .  

(33) 

(34) 
This is shown in figure 2. We see that the attentuation increases rapidly as Q becomes 
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greater than 1. For example, it only requires Q = 1.015 for the intensity to halve from 
one atom to the next. We conclude that evanescent modes will only be significant very 
close to the interface and very close to the cut-off frequency. 

7. Summary 

In this paper we have discussed the properties of phonons near interfaces. While 
placing two materials in contact obviously changes the density of allowed phonon states, 
localised measurements of phonon structure made on one side of the boundary show no 
features of the bulk phonon structure of the material on the other. We have shown how 
this must be so by applying general thermodynamic arguments to energy flow in thermal 
equilibrium. The transmission and reflection properties of interfaces must be such as to 
preserve the quality of the phonon radiation on either side. In order to gain insight into 
the mechanisms by which this comes about, we pursued detailed analysis of the model 
of two joined monatomic linear chains. Again, an energy transport argument could be 
applied, but a more illuminating approach was to examine the normal modes of a finite 
joined-chain system. We were able to show that the changed density of states resulting 
from joining the chains was precisely compensated by the averaged division of intensity 
between the chains so that the spectral energy densities in each material end up 
unchanged from their values with the chains isolated from one another. For modes 
delocalised between the chains, the only features of the phonon structure in one chain 
that relate to that of the other are the small phase changes in standing wave components 
that result from the changing boundary condition as the wave impedances of the media 
vary with frequency. At frequencies beyond the cut-off of one of the chains, modes 
are localised in one chain but penetrate the other as evanescent waves. In this case, 
measurements close to the boundary in the non-propagating medium can reveal the 
phonon structure of the other, but the rate of decay of the evanescent modes is such that 
only very close to the boundary and very close to the cut-off frequency would effects 
be significant. We therefore conclude that essentially any localised measurement of 
phonons made on one side of an interface will show only the phonon structure of the 
material in which the measurement is made. 
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